texte de Pascal : sur une véritable méthode de démonstration.

« Je veux donc faire entendre ce que c’est que démonstration par l’exemple de celles de géométrie, qui est presque la seule des sciences humaines qui en produise d’infaillibles, parce qu’elle seule observe la véritable méthode, au lieu que toutes les autres sont par une nécessité naturelle dans quelque sorte de confusion que les seuls géomètres savent extrêmement reconnaître.

Cette véritable méthode, qui formerait les démonstrations dans la plus haute excellence, s’il était possible d’y arriver, consisterait en deux choses principales : l’une, de n’employer aucun terme dont on n’eût auparavant expliqué nettement le sens ; l’autre, de n’avancer jamais aucune proposition qu’on ne démontrât par des vérités déjà connues ; c’est-à-dire, en un mot, à définir tous les termes et à prouver toutes les propositions. Mais, pour suivre l’ordre même que j’explique, il faut que je déclare ce que j’entends par définition.

On ne reconnaît en géométrie que les seules définitions que les logiciens appellent définitions de nom, c’est-à-dire que les seules impositions de nom aux choses qu’on a clairement désignées en termes parfaitement connus ; et je ne parle que de celles-là seulement.

Leur utilité et leur usage est d’éclaircir et d’abréger le discours, en exprimant, par le seul nom qu’on impose, ce qui ne pourrait se dire qu’en plusieurs termes ; en sorte néanmoins que le nom imposé demeure dénué de tout autre sens, s’il en a, pour n’avoir plus que celui auquel on le destine uniquement. En voici un exemple : si l’on a besoin de distinguer dans les nombres ceux qui sont divisibles en deux également d’avec ceux qui ne le sont pas, pour éviter de répéter souvent cette condition on lui donne un nom en cette sorte : j’appelle tout nombre divisible en deux également, nombre pair.

Voilà une définition géométrique : parce qu’après avoir clairement désigné une chose, savoir tout nombre divisible en deux également, on lui donne un nom que l’on destitue de tout autre sens, s’il en a, pour lui donner celui de la chose désignée. D’où il paraît que les définitions sont très libres, et qu’elles ne sont jamais sujettes à être contredites ; car il n’y a rien de plus permis que de donner à une chose qu’on a clairement désignée un nom tel qu’on voudra. Il faut seulement prendre garde qu’on n’abuse de la liberté qu’on a d’imposer des noms, en donnant le même à deux choses différentes.

Ce n’est pas que cela ne soit permis, pourvu qu’on n’en confonde pas les conséquences, et qu’on ne les étende pas de l’une à l’autre.

Mais si l’on tombe dans ce vice, on peut lui opposer un remède très sûr et très infaillible ; c’est de substituer mentalement la définition à la place du défini, et d’avoir toujours la définition si présente, que toutes les fois qu’on parle, par exemple, de nombre pair, on entende précisément que c’est celui qui est divisible en deux parties égales, et que ces deux choses soient tellement jointes et inséparables dans la pensée, qu’aussitôt que le discours en exprime l’une, l’esprit y attache immédiatement l’autre.

Car les géométres et tous ceux qui agissent méthodiquement, n’imposent des noms aux choses que pour abréger le discours, et non pour diminuer ou changer l’idée des choses dont ils discourent. Et ils prétendent que l’esprit supplée toujours la définition entière aux termes courts, qu’ils n’emploient que pour éviter la confusion que la multitude des paroles apporte.

Rien n’éloigne plus promptement et plus puissamment les surprises captieuses des sophistes que cette méthode, qu’il faut avoir toujours présente, et qui suffit seule pour bannir toutes sortes de difficultés et d’équivoques.

Ces choses étant bien entendues, je reviens à l’explication du véritable ordre, qui consiste, comme je disais, à tout définir et à tout prouver. Certainement cette méthode serait belle, mais elle est absolument impossible : car il est évident que les premiers termes qu’on voudrait définir, en supposeraient de précédents pour servir à leur explication, et que de même les premières propositions qu’on voudrait prouver en supposeraient d’autres qui les précédassent ; et ainsi il est clair qu’on n’arriverait jamais aux premières.

Aussi, en poussant les recherches de plus en plus, on arrive nécessairement à des mots primitifs qu’on ne peut plus définir, et à des principes si clairs qu’on n’en trouve plus qui le soient davantage pour servir à leur preuve.

D’où il paraît que les hommes sont dans une impuissance naturelle et immuable de traiter quelque science que ce soit, dans un ordre absolument accompli.

Mais il ne s’ensuit pas de là qu’on doive abandonner toute sorte d’ordre.

Car il y en a un, et c’est celui de la géométrie, qui est à la vérité inférieur en ce qu’il est moins convaincant, mais non pas en ce qu’il est moins certain. Il ne définit pas tout et ne prouve pas tout, et c’est en cela qu’il lui cède ; mais il ne suppose que des choses claires et constantes par la lumière naturelle, et c’est pourquoi il est parfaitement véritable, la nature le soutenant au défaut du discours. Cet ordre, le plus parfait entre les hommes, consiste non pas à tout définir ou à tout démontrer, ni aussi à ne rien définir ou à ne rien démontrer, mais à se tenir dans ce milieu de ne point définir les choses claires et entendues de tous les hommes, et de définir toutes les autres ; et de ne point prouver toutes les choses connues des hommes, et de prouver toutes les autres. Contre cet ordre pèchent également ceux qui entreprennent de tout définir et de tout prouver et ceux qui négligent de le faire dans les choses qui ne sont pas évidentes d’elles-mêmes.

C’est ce que la géométrie enseigne parfaitement. Elle ne définit aucune de ces choses, espace, temps, mouvement, nombre, égalité, ni les semblables qui sont en grand nombre, parce que ces termes-là désignent si naturellement les choses qu’ils signifient, à ceux qui entendent la langue, que l’éclaircissement qu’on en voudrait faire apporterait plus d’obscurité que d’instruction. »

Blaise Pascal, De l’esprit géométrique et de l’art de persuader, section 1.

Ce contenu a été publié dans la démonstration, avec comme mot(s)-clé(s) , , , , . Vous pouvez le mettre en favoris avec ce permalien.

Laisser un commentaire